continuous dependence on spatial geometry for the generalized maxwell-cattaneo system 方程组对区域扰动的连续依赖性
continuous dependence of the solution of multi-dimensional reflected backward stochastic differential equations on the parameters 多维反射倒向随机微分方程的解对参数的连续依赖性
we establish the continuous dependence on the initial values and the spatial geometry in an initial-boundary value problem for the generalized maxwell-cattaneo system with no prescribed value for temperature t on boundary 值得注意的是问题只对热流得出了边界上的dirichlet条件,对温度未给出边界值条件,这一点在数学上物理上更合理。
moreover, existence, uniqueness and continuous dependence of decreasing solutions and non-monotonic solutions for a linear iterative functional equation are discussed . some corresponding results are generalized to a quasi-linear iterative equation 本章还讨论了线性型迭代方程的递减解与非单调解的存在唯一性及连续依赖性,并将相关结果推广到拟线性型迭代方程。
the euler scheme for stochastic differential equations is first brought forward, then the euler scheme with variable step-length for stochastic differential equations is presented, and their convergence and continuous dependence on initial value are discussed 摘要首先给出了线性随机微分方程的欧拉格式算法,然后给出了非线性随机微分方程变步长的欧拉格式算法,接着讨论了其对初值的连续依赖性和收敛性。